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ABSTRACT 

Experimental and numerical study is performed to investigate the characteristics of outward 

freezing heat transfer in water-saturated porous media. Experiments are carried out on a 

vertical annular space cooled from the inner surface and kept insulated from the outer, lower 

and upper surfaces. Sandstone grains, glass beads and PVC beads of 16 mm diameter are used 

as porous media to investigate the thermal conductivity effect on the freezing process. Three 

different sizes of sandstone grains of average diameters of 4, 8 and 16 mm respectively are 

used to investigate the effect of the porous matrix. 

A mathematical model based on two-dimensional analysis which considered the heat 

conduction as the only mode of heat transfer in both solid and liquid regions of the PCM. The 

finite element method is used to develop this model based on Galerkin approach to solve the 

transient behavior of the freezing in water-saturated porous media phenomenon. Body-fitted 

curvilinear coordinates are used for treating the freezing front. The effect of thermal 

conductivity, porosity of the porous media, the wall temperature represented by Stefan 

number and the initial temperature of liquid phase represented by superheating parameter on 

the heat transfer characteristics and freezing rate are investigated. Results from the present 

model have been verified through the comparison with those available in the existing 

literature and good agreement was observed. 
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1. INTRODUCTION 

Solidification of a liquid saturated porous medium occurs in a wide variety of situations in 

geophysics and engineering. Examples include seasonal freezing of soil, artificial freezing of 

ground as a construction technique for supporting poor soils, insulation of underground 

buildings. Metallurgical applications include manufacturing of composite materials and 

purification of metals. Biomedical applications include cryo-preservation of biological cells 
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and tissues.  Other applications include food processing, nuclear reactor safety, underground 

burial of radioactive wastes, and latent heat thermal energy storage. 

One particular application is the artificial freezing of the ground which is frequently used for 

construction and mining purposes and recently the method has gained widespread attention in 

civil engineering practice. The frozen soil is employed as structural support and as a water 

barrier in large-scale excavations and tunnel or shaft constructions. A series of vertical 

freezing pipes to produce a line of linked frozen bodies essentially impermeable to ground 

water flow are used to isolate the saturated region from the underground flow [1]. Predictions 

of the process of frozen barrier formation and the design of mechanical/thermal systems to 

produce frozen barrier involves the specification of the equations of fluid flow, heat and mass 

transport and phase change. These equations are complicated; therefore, most research efforts 

have studied these equations under simplifying assumptions.  Properties such as density, 

specific heat, and thermal conductivity intimately depend on the characteristics of the porous 

media (e.g. porosity and permeability). Natural convection, ground water seepage, and other 

types of fluid flow in the liquid further complicate the phase-change problem.    

The solid-liquid phase-change heat transfer problems are called moving boundary problems, 

in which the unknowns are the interface position that separates the liquid and solid regions as 

well as the temperature distributions in both regions. The interface motion is determined from 

the conservation of thermal energy at the interface. This introduces nonlinearity to the 

problem that has challenged engineers for more than a century since the pioneering study of 

Stefan on the growth of ice is in 1891. The Stefan model is based on the presence of a sharp 

interface dividing the whole domain into two subdomains; the unfrozen ice-free and the fully 

frozen water-free regions. The literature dealing with the freezing of a pure liquid saturated 

porous medium is abundant and an extensive review is available [2]. A review paper by 

Sanger [3] examines the applications and other aspects of artificial soil freezing arising in 

construction. Natural freezing and thawing of soils is important in determining the heat loads 

of underground buildings. Performance of ground-based heat pumps could be affected by 

freezing and thawing of the soil around the heat exchanger pipes in the ground [4, 5].  

A large part of the available literature has been aimed toward practical design applications 

used for construction. Sheshukov and Egorov [6] presented a numerical model capable of 

simulating the freezing of aqueous solution flow in saturated porous media. Their model is 

based on a finite difference approximation of the coupled equations for liquid water flow, heat 

and solute transport and phase change. Goldstein and Reid [7] studied freezing or melting in a 

water-saturated porous medium in the presence of seepage flow. The energy equation in the 

unfrozen region was solved without knowing the shape of the frozen region. The nonlinear 

interfacial energy balance was transformed into a nonlinear integral equation which was 

linearized by solving the equation over short time increments.  

Freezing and melting of water in saturated porous media contained in various enclosures had 

been studied experimentally and numerically by Weaver and Viskanta [8]. Their freezing 

experiments in a rectangular cavity clearly showed the influence of natural convection on the 

solid/liquid interface shape and motion. Beckermann and Viskanta [9] combined numerical 

and experimental studies for solid/liquid phase change in porous media with natural 

convection in the molten region. Their model was based on volume averaged transport 

equations, while the phase change was assumed to occur over a small temperature range. 

Experiments were performed in a vertical, square enclosure using gallium and glass beads as 

the PCM and the porous matrix, respectively. They showed that natural convection, as well as 

conduction in the solid, has a considerable influence on the interface shape during both the 

melting and solidification processes. All these works considered local thermal equilibrium 

between the solid matrix and the PCM, and this was acceptable because in most of the cases, 

they are dealing with low thermal conductivity porous media. Chellaiah and Viskanta [10] 
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conducted an experimental study on freezing of saturated and superheated liquid-porous 

media contained in a rectangular test cell. The effects of different size glass beads, imposed 

temperature difference and liquid superheat were investigated. Lein and Richard [11] carried 

out experiments to visualize the interaction between natural convection and the phase change 

process in porous media. Various aspect ratios were examined. It was found that the natural 

convection process is controlled by the mean Rayleigh number and weakens as the freezing 

process proceeds. An extensive review on multiphase transport in porous media is found in 

[12]. Mesalhy et al. [13] investigated numerically the melting process inside an irregular 

geometry filled with high thermal conductivity porous matrix saturated with phase change 

material PCM. Their model is resting on the averaged conservation equation for mass, 

momentum and energy with phase change (melting) in porous medium. They found that the 

best technique to enhance the response of PCM storage is to use a solid matrix with high 

porosity and high thermal conductivity.   

Atwan [14] carried out experiments for inward freezing inside a vertical cylinder containing 

saturated porous medium. Also, he introduced a mathematical model based on a one 

dimensional analysis considering the heat conduction as the only mode of heat transfer in both 

solid and liquid phases using finite difference approximation. Pan and Wu [15] performed a 

numerical simulation to describe the coupled heat transfer of water saturated soil with a two 

phase closed thermosyphon using finite difference method. The mechanism of freezing 

expansion restrained by the two-phase closed thermosyphon is exposed, based on which the 

effective radius can be determined for engineering applications. Mackie et al. [16] addressed 

the problem of Rayleigh-Benard instability of a liquid layer undergoing phase transformation 

within a porous medium.  They performed a linear stability analysis which reveals that the 

onset of convection or the stability of the system is significantly affected by the presence of 

the porous medium, the state of solidification and the thermal boundary conditions.             

It is noticed from the previous literature that only a very limited amount of numerical and 

experimental investigations on phase-change heat transfer in liquid saturated porous media 

were available, and understanding of the phenomenon is incomplete. Therefore, the objective 

of the present work is to investigate experimentally and numerically the thermal 

characteristics of outward freezing heat transfer in liquid-saturated porous media.  

 

2.  EXPERIMENTS 

2.1 Experimental Apparatus 

The present test apparatus is illustrated schematically in Fig. (1). The main components of the 

experimental apparatus that built for this research are the test cell which contains the saturated 

porous media, brine tank which serves as the thermal environment for the freezing 

experiments and a refrigeration unit for cooling the brine. This apparatus is equipped with 

devices for circulating, and controlling the brine temperature in its bath, and by appropriate 

instrumentation.  

The brine tank is a polyvinyl chloride (PVC) cylindrical tank with an inside diameter of 500 

mm, 800 mm total height, and 15 mm thick. To reduce the heat gain, the tank is insulated with 

two layers of glass wool with 50 mm thickness. The brine is an aqueous solution of 30-wt% 

ethylene glycol and is used as the heat transfer fluid. The test cell is connected to the brine 

tank in which the evaporator of the refrigeration unit is immersed to cool the brine to the 

desired temperature using a thermostat. In addition, the brine tank is a large reservoir which is 

selected to smooth any temperature fluctuations associated with cycling. The brine is 

circulated through the test cell using a 0.5 hp centrifugal pump. The brine flow rate is 

controlled using valves and measured by an orifice meter with an inverted U-tube manometer. 

All connecting pipes are PVC and properly insulated to minimize heat gain.             
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The heart of the experimental apparatus is the test cell in which the outward freezing takes 

place. The test cell consists of a brass tube of 24 mm outer diameter, 400 mm length and a 

thickness of 1 mm placed concentrically in a vertical flanged PVC cylinder of 90 mm inner 

diameter, overall length of 250 mm and 10 mm thickness. The water saturated porous medium 

is randomly filled in the annular space between the brass tube and the flanged PVC cylinder. 

The choice of brass thin walled tube being made to facilitate the establishment of the thermal 

boundary condition for the outward freezing experiments. Two acrylic polystyrene covers of 

120 mm diameter and 10 mm thickness are bolted with the flanged PVC cylinder. The test 

cell is depicted in Fig. (2a).  

Measurement of the temperature distribution inside the porous medium was made by three 

thermocouple racks. Radial and azimuthal positions of the racks are shown in Fig.(2b). The 

cylinder wall temperature is measured by three thermocouples deployed along the height and 

around the circumference of the brass cylinder. Two thermocouples are used to measure the 

brine supply and return temperatures. Another one is used to measure the surrounding 

temperature. All the thermocouples used are copper-constantan (T-type) having a wire 

diameter of 0.3 mm and are calibrated prior to their installation in the apparatus. All 

thermocouple readings are taken using a compensated digital thermometer accurate to 0.1 
o
C 

through selector switches.     

 

2.2 Test Materials 

Three types of porous material are tested for outward freezing of saturated water-porous 

material. These materials are sand grains, glass beads, and PVC beads. The thermophysical 

properties of the tested materials as well as water and ice are taken from [20], and illustrated 

in Table (1). This is carried out to show the effect of the thermal conductivity of porous 

material.  The study aimed also to show the effect of grain size or the porosity of the porous 

medium, so three different sand grain sizes were used. The sand "spheres" are, in fact, not 

exactly spherical but have a narrow size distribution for which the equivalent diameter is 

determined from the lower and upper limits of the DIN standard sieving analysis. The sand 

grains are considered to be spheres of equivalent diameters 4, 8 and 16 mm respectively. The 

porosity (volume of voids over the total volume) was estimated separately by measuring the 

volume of water that is needed to fill the void space for a known container volume. 

Insignificant change in porosity of the particles used of size 8 mm and 16 mm for the three 

tested materials and its value is about 0.45 while its value for sandstone particles of 4 mm size 

was 0.4. The discrepancy is due to the roundness of the particles. The packing material was 

carefully placed into the test cell to ensure uniformity in the structure of the porous matrix. 

The same packing was used in all experiments. The saturating fluid is the city main water.  

 

Table (1): Thermophysical properties of the test materials, [20] 

                  Property 

Material 
      kg/m

3
 Cp    J/kg K k     W/m. K 

PVC 1380 960 0.15 

Glass 2700 800 0.76 

Sandstone 2150 710 1.6 

Water 1000 4181 0.606 

Ice 920 2040 1.88 

 

2.3 Experimental Procedures 

The preparations for a freezing run were initiated with the vertical annular container empty 

and thoroughly clean. To begin, the test cell was first filled with the porous medium. The 

particles were settled to obtain approximately the same conditions for each run. The ordinary 
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tap water was carefully siphoned into the test cell to ensure that no air was trapped in the 

matrix or to prevent air from mixing with the water. Prior to starting each experimental run, 

the brine is cooled to a temperature below the desired tested wall temperature. Also, the 

experimental unit is kept at a fixed (reference) temperature. After reaching this initial 

condition, the experiment starts and the brine begins to circulate through the brass tube that is 

placed in the middle of the test cell at a suitably chosen flow rates and temperatures (below 

the fusion temperature). During the run, the porous medium temperatures are recorded at 

prescribed regular time intervals. From these temperatures, the temperature distributions and 

solid-liquid interface position as a function of time are determined. The time at which the 

interface reaches an arbitrary thermocouple (i.e. radial position), is determined as the time 

when the temperature difference between two consecutive temperature readings can be 

detected (second reading is below the fusion temperature). Since the temperature readings are 

taken at finite intervals, this introduces some error in the experimental determination of the 

solid-liquid interface position. 

 

3.  MATHEMATICAL MODEL 

3.1 Physical Model and Basic Equations 

The physical system for freezing of saturated porous medium contained in the annular space 

between the inner vertical tube and the outer vertical cylinder is modelled to supplement the 

experimental results. The annular space is closed at the ends, filled uniformly with solid 

particles (porous medium) and saturated by water. The top and the bottom of the test cell as 

well as the outer cylinder are assumed to be adiabatic. Initially, the system is at a uniform 

temperature greater than or equal to the freezing temperature (Ti  Tf). At time (t 0), a 

uniform temperature is imposed on the inner tube surface which is less than the freezing 

temperature, (Tw<Tf). This initiates the freezing process with the freezing front moving 

radially outward. Figure (2) shows the physical model, coordinate system, and thermal 

boundary conditions. The following assumptions are introduced in the analysis: 

 

     1.  The porous medium is isotropic and homogeneous.  

     2.  The thermophysical properties are independent of temperature but are different for each 

phase. 

     3.   The volume change due to phase change is negligible.  

     4.   Two-dimensional heat conduction model is considered in both the solid and the liquid 

phases, i.e., natural convection in liquid phase is assumed to be absent.   

5. The solid-liquid interface is clearly defined, i.e., the PCM has a well-defined 

phase change temperature. 

6. The porosity is uniform. 

7. The local thermal equilibrium between phases is assumed.  

With the preceding assumptions, the heat transfer process in the liquid and the solid 

regions are governed by the heat equation which is written in cylindrical coordinates as:  

 

a- for the liquid phase with porous medium; 

            

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b- for the solid phase with the porous medium; 



EXPERIMENTAL AND NUMERICAL STUDY FOR OUTWARD FREEZING OF LIQUID-SATURATED 

POROUS MEDIA IN A VERTICAL ANNULUS 

Vol. 3, No. 11, Dec. 2008 

382 

 

             




























 2

2

2

2
1

z

T

r

T

r

T
 

rt

T smsmsm

sm

sm 


                                                             (2) 

where, (lm) and (sm) refer to the liquid and solid influenced by the porous medium, 

respectively. These governing equations are subjected to the following initial, boundary, and 

phase change interface conditions: 

            Tsm=Tlm=T0 ,        for t  0        (initial condition)                                        (3-a) 

            Tsm=Tw                at  r = ri         (at inner surface)                                       (3-b) 

             Tsm=Tlm=Tf           at r = r
*
(z,t)    (at solid-liquid interface)                                 (3-c)                                          

              0
r

Tlm 



     at r=ro           (at the outer surface)                                        (3-d) 

   0
z

T

z

T lmsm









 at z=0, z=H    (at the bottom and the top surfaces)                      (3-e)  

Also, another condition at the solid liquid interface is obtained by applying the energy balance 

at the solid-liquid interface, at which the heat conducted to the interface from the liquid is 

equated to the latent heat required by the phase change plus the conduction into the solid, 

which may be written as: 

                                        qlm = qs + qsm 

 

where, qs is the energy released to solidify a layer of thickness  r which is per unit surface 

area is; 
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Therefore, the interfacial energy balance yields; 
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It is noted that the difference in density of the solid and liquid PCM is accounted for the 

interfacial energy balance, but is neglected in the energy equation (i.e. convection is absent). 

 

3.2 Coordinate Transformation and Dimensionless Governing Equations 

The main feature of the freezing/melting problems is the geometrical change and movement 

of the irregular solid-liquid interface and the non-linearity associated with the solid-liquid 

interface. This makes the problem to be highly non-linear. One resolution of former difficulty 

is to perform an immobilization transformation of coordinates. This simplifies the numerical 

analysis by transforming the irregular boundary to a fixed one of much simpler geometry, at 

the expense of complicating the governing equations, so the problem of discretization at each 

time step is avoided. The formulation of the irregular front motion and the determination of its 

location requires two spatial coordinates.  Introducing the general Oberkampf transformation 

[17] as follows: 
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Applying the above expressions for both solid-porous medium phase and liquid-porous 

medium phase respectively, selecting the domain height H as a reference length and selecting 

the following non dimensional groups: 
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where, Ste
*
 is the solid phase-porous media Stefan number, and other symbols are as defined 

in the nomenclature. With the preceding dimensionless variables, the resulting dimensionless 

immobilized transformed energy equations for both the solid and the liquid phases influenced 

by the porous medium are, respectively, 

For the solid,  
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For the liquid,        
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Also, the initial, boundary, and interface conditions, Eq. (3), may be given in a 

dimensionless form as: 

lm=0 ,        for   0     (initial condition)                                                           (8-a) 

sm=w=-1    at  1 = 0    (at inner surface)                                                            (8-b) 

  lm 0
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
    at 2 = 1    (at outer surface)                                      (8-c) 

  lmsm 0

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
at   =0,  =1    (at the lower and the upper surfaces)                 (8-d)                  

sm=lm=0   at 1 = 1,  2 = 0   (at solid-liquid interface)                                  (8-e)                                          
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Before the model equations can be solved, a viable means of determining the thermophysical 

properties of the porous media is needed. Effective or average properties are used which are 

based on the fraction of each constituent. Specially, the effective density, specific heat, and 

thermal conductivity, which results in the following equations for the solid and the liquid 

phases influenced by the porous media.  

  mssm   1                                                                                            (9-a) 

  mssm ccc  1                                                                                             (9-b) 
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              mssm kkk  1                                                                      (9-c) 

  mllm   1                                                                     (9-d) 

  mllm ccc  1                                                                      (9-e) 

              mllm kkk  1                                                                      (9-f) 

where, s, l, and m, respectively, refer to the solid phase of PCM, the liquid phase of PCM, and 

the porous medium. 

 

3.3 Numerical Solution and Finite Element Formulation 

The finite element analysis is presented here for the transformed basic equations using linear 

triangular elements. Equations (6) and (7) with the appropriate boundary conditions of Eqs. 

(8) are formulated using the Galerkin based finite element method [18, 19]. The objective of 

the finite element is to reduce the system of governing equations into a discretized set of 

algebraic equations. The procedure begins with the division of the continuum region G, of 

interest (computational domain) into a number of simply shaped regions (triangles) called 

finite elements. 

 

The Finite Element Formulation 

The temperature, for either the solid or the liquid induced saturated porous media in any 

element (triangle) of the discretized domain can be represented in terms of nodal temperature 

by the following simple polynomials: 

m

m

m

e N  



3

1

                                          (10) 

where;   

)(
2

1
1111  cba

A
N                                 (11-a) 

)(
2

1
2222  cba

A
N                             (11-b) 

)(
2

1
3333  cba

A
N                               (11-c) 

where; 

A =  area of the triangle element 123 

23321  a  

321  b  

231  c  

31132  a  

132  b  

132  c  

12213  a  

213  b  

313  c  

 

The interpolation functions [N1, N2, N3] in Eqs. (11) are derived from the assumption of linear 

variation of temperature in the element. The approximate expressions of the system variables 

are substituted into the governing equations (6) and (7) and the global errors are minimized 

using the above interpolation functions Ni (i = 1, 2, 3) as weighting functions. The solution of 

Eqs. (5) and (6) that satisfies the boundary conditions given by Eqs. (8) can be obtained after 

weighted integration over the domain G
e
 and the application of Green’s theorem, in the 

equivalent matrix form. Then, these equations can be assembled to obtain the global 

characteristic matrix and the global characteristic vector. The system matrices on the global 

level can be written in the form:  

         IICI FKK    ,    for the solid phase induced porous medium                       (12-a) 

         IIIICII FKK    ,  for the liquid phase induced porous medium                      (12-b) 
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where, 

[K]I and [K]II are the global stiffness matrices. 

[KC]I and [KC]II are the global heat capacity matrices. 

{F}I and {F}II  are the global force vector 

The above matrices are derived from the followings: 

 

A common procedure is to solve the time dependent model equations and thus obtain the 

values of the unknown variable at each point in time, so, the final form of equations on the 

global level, which are used to solve for the unknown variable at time, Fo, are given as: 

      *`*  FK Fo           (13) 

where; 

     FoFoC

* KFo/KK   

       FoFoFoCFo

* Fo/KFF   

and  

  dG )
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where;  

 E =  total number of elements, G bounded computational domain,  

   domain boundary, and 

{Fo}, {Fo-Fo} are the nodal matrices of the unknown variable which is the temperature is the 

solid phase and the liquid phase induced porous media respectively. Equation (13) gives a set 

of linear equations which have been solved by Gauss elimination method. The finite element 

formulation and the resulting linear equations were solved through a computer program 

written here in FORTRAN code. 

 

3.4 Model Validation 

The accuracy of the numerical procedure employed in the present study is validated through 

the comparison with the experimental data of Mohamed [21] for the limiting case of a 

homogeneous medium (no porous medium =1) as shown in Fig. (4). The present numerical 

results obtained for ice growth layer (solidified layer thickness) are found to be in good 

agreement with this experimental data for freezing of water around a vertical cylinder.  

 

4. RESULTS AND DISCUSSIONS 

4.1 Experimental Results 

Experiments are carried out to investigate the governing parameters on the freezing process of 

the liquid saturated porous media. Three materials, PVC beads, glass beads and sandstone 

grains are tested with tap water as a saturating fluid to simulate different types of soils. The 

operating conditions are characterized by the subcooling of the inner tube wall temperature 

below the phase change temperature is represented by either Stefan Ste or modified Stefan 

Ste
*
 number and the initial liquid phase superheating represented by the superheating 

coefficient Sc that are defined in Eq. (5).  
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During the freezing process, the solid-liquid interface location, consequently the freezing rate 

and the temperature distribution in both solid and liquid phases are unknowns; therefore, our 

discussions will concentrate on these unknowns. The timewise variation of the temperature at 

different radial distances for all test media is shown in Figs. (5-7). It is observed from the 

figure that the temperature is rapidly decreases at the early stages of the freezing process due 

to the sensible heat librated from the superheated liquid and the later reaches the freezing 

temperature. The solid region is represented by the portion of the temperature distribution 

below the freezing temperature (Tf=0), even though the freezing process of water takes place 

within a certain temperature range because of salts and impurities in water.  

As the solidified layer thickness increases, the freezing rate decreases due to the increase of 

the thermal resistance to heat flow from liquid phase to the inner cold brass tube.  At later 

stages of the freezing process the temperature distribution becomes horizontal having 

temperature values near the tube wall temperature. It is also noticed that the temperature 

distribution is strongly affected by the effective thermal conductivity i.e. higher effective 

thermal conductivity gets narrower range of temperature variation. 

The timewise variation of the temperature at different axial locations at nearly the mid vertical 

plane of the annulus layer (r=27 mm) for water saturated-sandstone grains is depicted in Fig. 

(8). The figure shows that the temperature distribution is slightly affected by the axial 

location. The same behaviour is also noticed for both glass and PVC beads and is not shown 

for sake of brevity.                 

 

4.2 Numerical Results 
To supplement the experimental work and cover a wide range of the governing parameters a 

series of numerical runs are performed. This is done in order to illustrate the effect of various 

parameters, e.g. initial liquid phase induced porous medium temperature represented by 

superheating coefficient Sc, cold wall temperature which represented by Stefan or modified 

Stefan number, porosity or void fraction, and porous medium material type on the freezing 

process of water saturated porous media. Decreasing the initial liquid temperature means 

decreasing the superheating coefficient. The effect of superheating coefficient on the freezing 

process of glass beads of =0.45 is illustrated in Fig. (9). It is noticed from the figure, as the 

superheating coefficient decreases the freezing rate increases. This is attributed to higher net 

heat flux at the solid-liquid interface and consequently higher freezing rate.   

The effect of wall temperature is represented by Stefan or modified Stefan number effect. 

Decreasing the wall temperature is equivalent to increasing Stefan or modified Stefan number 

which results in increasing the freezing rate of water saturated-glass beads as shown in       

Fig. (10). It is observed from the figure that the slop of all curves is high and approximately 

the same due to the rapid growth of the solidified layer at the earlier time. With time 

progressing, the frozen layer thermal resistance increases and this means lower freezing rate.  

The effect of the porosity on the freezing rate is depicted in Fig. (11), for sandstone grains at 

superheating coefficient Sc=2.5. It is observed from the figure that as the porosity increases 

the freezing rate decreases and this is due to the decrease of the effective thermal conductivity 

and more energy is required to be removed to solidify more water that occupies voids. The 

timewise variation of the frozen volume fraction for water saturated sandstone, glass and PVC 

beads is illustrated in Fig. (12). Higher freezing rate for sandstone grains is observed due to 

higher effective thermal conductivity. The dimensionless time is replaced by the time in 

minutes as it is a function of the thermal diffusivity and gets confusion.  

Figure (13) shows the timewise variation of the dimensionless temperature at three different 

radial locations in the liquid saturated PVC beads phase denoted by 2= 0.25, 0.5, and 0.75 

respectively at an axial location denoted by 2=0.6. From the figure, it is illustrated that all the 

locations started from the initial dimensionless temperature having a value of 0.5 and finished 
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with zero value corresponding to the freezing point. Also, the nearer is location from the cold 

inner tube the lower is the temperature. The dimensionless temperature at different axial 

locations in the liquid saturated PVC beads denoted by 2=0.25, 0.6 and 0.9 respectively at a 

radial location denoted by 2=0.5 is illustrated in Fig. (14). The figure shows lower 

temperature is attained at the mid-height of the annulus indicating more freezing rate than the 

lower and higher levels of the annulus.  

The predicted freezing front locations for water saturated PVC beads, glass beads, and 

sandstone grains are illustrated in Fig. (15) at =0.45, Sc=2.5. It is observed from the figure 

that the intensity of lines is higher for PVC indicating that more time intervals are required for 

freezing the same volume and this is due to its lower thermal conductivity.  The temperature 

contours for the water saturated sandstone grains undergoing freezing process at t=30, 90 and 

150 minutes respectively are illustrated in Fig. (16).  

The model predictions of the frozen volume fraction illustrated in Figs (9-12) are utilized to 

obtain the following correlation equation:- 

 

776.0388.0*176.0523.0

o

kSc 927.4
V

V                    (14) 

where;  

1.56x10
-5

 ≤≤ 1.16x10
-2

, 1.25≤Sc≤5, 0.546 ≤k
*
≤ 0.773, and 0.3≤ ≤ 0.6 with a maximum 

deviation of   6 %.   

 

4.3 Comparison of Present Predictions with Experimental Data 

In comparing the predictions of the numerical model with the experimental data, a sample of 

results is used for sake of brevity. Figure (17) illustrates the temperature distributions at 

different times during the freezing process of water saturated-sandstone grains of average 

particle size of 16 mm diameter at an axial location denoted by 1=2=0.6. The figure 

indicates that there are some discrepancies especially in solid phase induced porous medium. 

This is attributed to temperature dependent thermophysical properties, variation in the inner 

tube wall temperature that takes place during the experiments and contact resistance that are 

not considered in the model. The same behaviour is noticed for the freezing process of water 

saturated PVC beads in Fig. (18). 

The comparison of the prediction with experimental data for the frozen volume fraction at 

different times for the freezing process of water saturated sandstone grains and PVC bead is 

shown in Fig. (19). Good agreement between the prediction and the experimental data is 

observed. 

Based on the experimental data presented in Fig. (19) as well as experimental data for frozen 

volume fraction of sandstone grain of average diameters of 4 mm and 8 mm, the following 

empirical correlation equation was obtained: 

1740112245
.*.

o

Ste .
V

V
                               (15) 

where; 7.7x10
-4

 ≤≤ 8.17x10
-3

, 0.0373≤Ste
*
≤0.0664 with a maximum deviation of   15 %.   

 

5. CONCULSIONS                

From the findings in the present work, the following concluding remarks are obtained: 

1. The freezing process of water saturated-porous media is controlled mainly by 

either controlling the effective thermophysical properties of the porous matrix 

or the initial and operating conditions.  
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2. The freezing rate of water saturated-sandstone grains is higher than that of 

water saturated-glass and PVC beads due to its higher effective thermal 

conductivity. 

3. The freezing rate increases with either decreasing the superheating coefficient 

(decreasing the initial media temperature) or increasing Stefan number 

(decreasing the cold tube wall temperature). 

4. A computer code, based on two-dimensional heat conduction model is 

developed and predicts reasonably the temperature field in both solid and 

liquid phase induced porous media as well as the freezing rate of water that 

saturates the porous media.   

5. The discrepancy between the experimental data and predictions is in general 

attributed to the temperature dependent thermophysical properties of the test 

materials, change in density which accompanies phase change, the variation of 

inner tube wall temperature during the time of the experiments, as well as the 

thermal resistance between the wall and the media. 

6. Correlation equations for the frozen volume fraction as a function of different 

operation parameters are obtained. 
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NOMENCLATURE 

SI system of units is used for the whole parameters within the present paper. 

 

A             element area 

a1,b1,c1,.. polynomial coefficients, Eq. (11) 

c             specific heat  

d   bead mean dimeter 

{F}         force vector, Eq. (12). 

G            computational domain 

hf          latent heat of fusion 

k   thermal conductivity 

[K]         stiffness matrix 

[KC]        heat capacity matrix 

N            interpolation function  

q             heat flux    

ro   outer radius of the bed 

r   radial, position or coordinate 

r
*
           front location 

T   temperature 

t   time 

V           frozen volume fraction 

Vo            initial volume 

z  axial coordinate 

Subscripts: 

0        initial 

f        front or fusion 

i         nodal point number or inner 

l         liquid phase  or lower  

sm     solid phase influenced by  porous medium 

u        upper 

w        wall 

e         element level 

Superscripts: 

n       previous time 

n+1   current  time 

*       interface position 

Greek letters: 

      thermal diffusivity (k/c) 

      incremental step 

       average void fraction 

,    immobilized transformed coordinates 
 

Dimensionless terms: 

Fo       Fourier number  (sm t / H
2
) 

k
*
      effective thermal conductivity ratio, Eq. (5). 

R      dimensionless radial distance  (r/H) 

R
*
     dimensionless interface position  (r*/H) 

Sc     liquid superheating coefficient, Eq. (5).  

Ste
*
   modified Stefan number, Eq. (5).   

Ste    Stefan number, Eq. (5).       

       dimensionless frozen and unfrozen layer 

      given by Eq. (1).  



EXPERIMENTAL AND NUMERICAL STUDY FOR OUTWARD FREEZING OF LIQUID-SATURATED 

POROUS MEDIA IN A VERTICAL ANNULUS 

Vol. 3, No. 11, Dec. 2008 

390 

 

lm      liquid phase influenced by porous medium 

m       porous medium 

o        outer 

s         solid phase 

 

      dimensionless temperature  

       dimensionless time, (Fo.Ste
*
) 

Abbreviations:  

PCM   phase change material 

PVC   polyvinyl chloride   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1): Schematic diagram of the experimental set-up 

 

  

(a) Test cell (b) Thermocouples locations 

Fig. (2): Schematic diagram of the test cell and thermocouple locations 
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Fig. (3) Schematic diagram for the physical model, coordinate systems  

and boundary conditions  
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Fig. (4) Comparison of the present model predictions with the experimental data, [21] 
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Fig. (5) Timewise variation of temperature at different radial location for 

 water saturated-glass beads    
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Fig. (6) Timewise variation of temperature at different radial location for                 

water saturated-sandstone grains   
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Fig. (7) Timewise variation of temperature at different radial location for                 

water saturated-PVC beads   

 

 

-10

-5

0

5

10

15

20

25

30

0 40 80 120 160 200
Time (min)

T
e
m

p
e
ra

tu
re

 (
o
C

)

z=205 mm z=175 mm

z=140 mm z=90 mm

z=55 mm z=25 mm

Sandstone, d=16 mm r=27 mm

 
Fig. (8) Timewise variation of temperature at different axial location for water 

saturated-sandstone grains   
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Fig. (9) Timewise variation of frozen volume fraction for glass beads at different 

 initial liquid superheating coefficient (initial liquid temperature)  
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Fig. (10) Timewise variation of frozen volume fraction for glass beads at different 

 Stefan number (cold inner tube temperature)   
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Fig. (11) Timewise variation of frozen volume fraction for sandstone grains  

at different  porosity  
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Fig. (12) Timewise variation of frozen volume fraction for different porous materials 
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Fig. (13) Timewise variation of dimensionless temperature at different radial locations 

for liquid phase-PVC beads, at =0.475, Sc=1.47, Ste=0.066 
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Fig. (14) Timewise variation of dimensionless temperature at different axial locations for 

liquid phase-PVC beads at =0.475, Sc=1.47, Ste=0.066  
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(a) PVC beads (a) Glass beads (a) Sandstone grains 

Fig. (15) Freezing front location for water saturated different porous 

materials; Sc=2.5, =0.45, Time interval between lines is 20 min. 

 

 

   
(a) t=30 min. (a) t=90 min. (a) t=150 min. 

Fig. (16) Temperature contours for water saturated sandstone grains 

undergoing freezing process at different times, Sc=0.45 and  =0.45 
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Fig. (17) Comparison of the predicted and measured temperature for freezing water saturated-

sandstone grains at =0.45, Sc=2.0, Ste
*
=0.047 
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Fig. (18) Comparison of the predicted and measured temperature for freezing water saturated-

PVC beads at =0.475, Sc=1.47, Ste=0.066 
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Fig. (19) Comparison of the predicted and measured frozen volume fraction for freezing water 

saturated- =0.45, Sc=2.0, Ste
*
=0.047 and  

PVC beads at =0.475, Sc=1.47, Ste=0.066 


